miControl®

Antriebsregler

mcDSA-E42-HC

Artikelnummer: 1511132

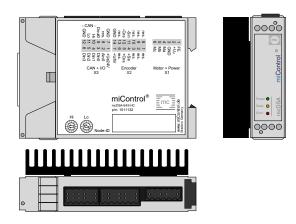
Abbildung ähnlich

Technische Daten

Versorgungsspannungen		
Versorgungsspannung Elektronik Ue*1	930 V	
Stromaufnahme Elektronik@ Ue=24V*2	typ. 50 mA	
Versorgungsspannung Leistung Up*3	960 V	
Ausgangsstrom		
Maximaler Ausgangsstrom	30 A	
Dauerausgangsstrom @ Up=24V*4	12 A	
Dauerausgangsstrom @ Up=48V*4	12 A	
PWM		
Ausgangsspannung	90% Up	
PWM-Frequenz	25, 32*5, 50 kHz	
Mechanische Daten		
Abmessungen LxBxH	110 x 39 x 77 mm	
Gewicht	310 g	
Umgebung		
Schutzart	IP20	
Umgebungstemperatur (Betrieb)*6	-4070 °C	
Umgebungstemperatur (Lagerung)	-4085 °C	
Luftfeuchtigkeit (nicht kondensierend)	590 %	
CAN-Bus		
Protokoll	DS301	
Geräteprofil	DS402	
Max. Baudrate	1 Mbit/s	
CAN Spezifikation	2.0B	
Galvanisch getrennt	nein	

Duchacher		
Drehgeber	. ,	
Тур	sin / cos	
Signale	+Sin,-Sin,+Cos,-Cos	
Auflösung	13 Bit pro Sinusperiode	
Eingangssignal	1 V Spitze-Spitze, differentiell	
Signal-Typ	Sinus/Cosinus, analog, differentiell	
Digitale Eingänge		
Anzahl	4 (Din03)	
Low-Pegel	-305 V	
High-Pegel	630 V	
Digitale Ausgänge		
Anzahl	1 (Dout0)	
Dauerausgangsstrom	1.5 A	
Lasten	resistiv, induktiv	
Ausgangsspannung	Versorgungsspannung Elektronik Ue	
Signal-Typ	plusschaltend	
Analoge Eingänge		
Anzahl	1 (Ain0)	
Signal-Typ	010 V, 12 Bit, single ended	

Weitere technische Daten finden Sie im mcManual.


^{*}¹ Kein Verpolungsschutz, die Zerstörungsgrenze liegt bei Überspannung von >= 33V oder kurzfristige Spitzenspannung von 37V < 1s
*² Endstufe aus, 5V Ausgang (Geberversorgung) ist unbelastet
*³ Kein Verpolungsschutz, die Zerstörungsgrenze liegt bei Überspannung von >= 80V
*⁴ Anschlusskabel mit maximal möglichem Leitungsquerschnitt, PWM-Frequenz 32 kHz, Umgebungstemperatur 40 °C (t >40 °C Derating), Effektivstrom: 12 A → 9.8

keine Garantie, da der Wert empirisch ermittelt wurde, bitte beachten Sie die Applikation Notes zur Ermittlung des Dauerstromes
*5 Standardwert

^{*6} Hex-Schalter sollten nicht verwendet werden bei T < -25°C (Einstellen der Node-ID über Firmwareparameter möglich)

Schema

©2023 by miControl

Klemmenbelegung

X1	Motor	
1	FE	Funktionserde
2	+Up	Versorgungsspannung Leistung
3	GND	Masse Leistung
4	Ма	Motorphase A
5	Mb	Motorphase B
6	Мс	Motorphase C
X2	Drehgeber	
1	res.	Reserviert
2	res.	Reserviert
3	res.	Reserviert
4	+Sin	Drehgeber, Sinussignal
5	+Cos	Drehgeber, Cosinussignal
6	res.	Reserviert
7	+U5V	5V Geberversorgung (Drehgeber)
8	res.	Reserviert
9	res.	Reserviert
10	res.	Reserviert
11	-Sin	Drehgeber, Sinussignal negiert
12	-Cos	Drehgeber, Cosinussignal negiert
13	res.	Reserviert
14	GND	Masse Geberversorgung
X3	I/O's und CAN	
1	+Ue24V	Versorgungsspannung Elektronik
2	Ain0	Analoger Eingang 0
3	Din0	Digitaler Eingang 0
4	Din1	Digitaler Eingang 1
5	Din2	Digitaler Eingang 2
6	Din3	Digitaler Eingang 3
7	GND	Masse Elektronik
8	res.	Reserviert
9	Dout0	Digitaler Ausgang 0
10	CAN Hi	CAN High
11	CAN Lo	CAN Low
12	CAN GND	Masse für CAN